
Efficiently Enumerating the Subsets of a Set

J. Loughry∗

Lockheed Martin Space Systems Company

J.I. van Hemert†

Leiden Institute of Advanced Computer Science
Leiden University

L. Schoofs‡

Intelligent Systems Lab
Department of Mathematics and Computer Science

University of Antwerp, RUCA

12 December 2000

Abstract

The task of constructing the subsets of a set grows exponentially with
the size of the set. The two most common methods of enumerating the
subsets of a set, lexicographic ordering and Gray codes, in practice are
sub-optimal when the sets become large. An algorithm is presented for
rapidly finding the smallest subset Tmin ⊆ S satisfying some condition P .
The algorithm generates a sequence of all subsets of a set of n elements in
which the number of elements in each subset is monotonically increasing.
Time complexity of the algorithm is only slightly greater than that of
lexicographic ordering. The algorithm will find the smallest subset con-
taining up to k < n items before either lexicographic ordering or a binary
reflected Gray code sequence have even looked at all n elements in the
set.

1 Introduction

The task of constructing the subsets of a set grows exponentially with the size
of the set. We describe a method for generating a sequence of subsets in which
the number of elements in each subset increases monotonically. No other known
method of enumerating subsets generates a monotonic sequence. The method
we present will find the smallest subset Tmin ⊆ S satisfying some condition P

∗Department 3740, Mail Stop X-3741, P.O. Box 179, Denver, Colorado 80201-0179 USA.
†Neils Bohrweg 1, 2333 CA Leiden, The Netherlands
‡Groenenborgerlaan 171, B-2020 Antwerpen, Belgium

1

in much less time than either lexicographic or Gray code ordering. An algo-
rithm is given for efficiently generating sequences of this type. The technique is
applicable to the solution of Constraint Satisfaction Problems (CSP).

1.1 Paper Organization

The first part of this paper introduces the idea of enumerating the subsets of a
set by means of a sequence of binary numbers. The known systematic methods
of enumerating the subsets of a set, lexicographic ordering and Gray codes, are
described, along with their drawbacks when sets become large. Then a new
method is described, one that generates the subsets of a set in monotonically
increasing order of size. An algorithm is presented for efficiently generating
sequences of this type.

2 Enumerating Subsets

We can express the idea of a k-subset (Tk) of a set S having n elements by
means of a n-digit binary number in which exactly k of the digits are 1 [4]. If a
given element of the set si ∈ Tk, then the ith most-significant bit of the n-digit
binary number is 1. The total number of subsets is 2n. Thus, to enumerate
P(S), the set of all subsets of S, it suffices to count from 0 to 2n − 1 in binary.

There are 2n! possible sequences. As n becomes large, the order in which
we construct the subsets becomes significant. A good solution must have the
following characteristics:

• It must be computationally efficient.

• All subsets containing k elements should be enumerated before any subsets
containing k+1 elements; and furthermore, the number of elements in each
subset should be monotonically increasing.

The two most commonly used methods of enumerating the subsets of a
set are lexicographic ordering and Gray codes [2]. Unfortunately, neither of
these methods satisfies the second requirement. We will shortly describe a new
method that does.

2.1 Lexicographic Ordering

Lexicographic ordering is simply the familiar counting sequence

1, 2, 3, . . . , 2n − 1.

Table 1 shows a lexicographic sequence, and Figure 1 illustrates how the size of
the subset varies over time. The problem with lexicographic ordering is that it
never considers the last element in the set until halfway through the sequence.
If you have a set of n items, you must construct 2n−1 permutations of the first
n − 1 items before even considering the nth item in the set. The performance
of this sequence for large values of n is poor.

2

Table 1: Subsets in lexicographic order. The last item in the set, represented by
the most significant bit of the binary representation, is not even considered until
halfway through the sequence. If the number of elements in the set is large, this
could take a very long time.

Binary Number Subset of { ◦, ¦, ?, • }
0000 φ
0001 { ◦ }
0010 { ¦ }
0011 { ◦, ¦ }
0100 { ? }
0101 { ◦, ? }
0110 { ¦, ? }
0111 { ◦, ¦, ? }
1000 { • }
1001 { ◦, • }
1010 { ¦, • }
1011 { ◦, ¦, • }
1100 { ?, • }
1101 { ◦, ?, • }
1110 { ¦, ?, • }
1111 { ◦, ¦, ?, • }

0 50 100 150 200 250
0

2

4

6

8

Time

k

Figure 1: Lexicographic ordering amounts simply to counting in binary.

3

2.2 Gray Codes

Gray codes are a rearrangement of the binary numbers such that adjacent val-
ues differ in exactly one bit position1. There are many such sequences; the one
shown here is called a binary reflected Gray code. A Gray code sequence is com-
putationally optimal in the sense that it minimizes the number of set operations
required. Any subset in P(S) can be constructed from its immediate predeces-
sor in the sequence merely by adding or removing one item. But Table 2 shows
that the Gray code sequence is no better than lexicographic ordering when it
comes to constructing a reasonable sequence of subsets. (Figure 2 shows this
behavior geometrically.) As in lexicographic ordering, the nth element in the set
is not even considered until 2n−1 subsets have already been constructed. The
performance of this method for large values of n is also poor.

Table 2: Subsets in Gray code order. Just as was the case with a lexicographic
sequence, the last item in the set, represented by the most significant bit of
the binary representation, is not even considered until fully half of all possible
subsets have been examined.

Binary Number Subset of { ◦, ¦, ?, • }
0000 φ
0001 { ◦ }
0011 { ◦, ¦ }
0010 { ¦ }
0110 { ¦, ? }
0111 { ◦, ¦, ? }
0101 { ◦, ? }
0100 { ? }
1100 { ?, • }
1110 { ¦, ?, • }
1111 { ◦, ¦, ?, • }
1101 { ◦, ?, • }
1001 { ◦, • }
1011 { ◦, ¦, • }
1010 { ¦, • }
1000 { • }

2.3 Banker’s Sequence

If n is large, then systematically constructing all 2n subsets of S can take a
while. If the problem is to find the smallest subset Tmin ⊆ S that satisfies some

1One way of constructing an n-bit Gray code is to find a Hamiltonian path through adjacent
vertices of an n-dimensional hypercube with sides of length 1.

4

0 50 100 150 200 250
0

2

4

6

8

Time

k

Figure 2: Gray codes are computationally optimal, but they share the weakness
of lexicographic ordering that not all members of the set are examined until the
sequence is half finished.

predicate P , then we would like to examine subsets in monotonically increasing
order by size.

Consider the ordering presented in Table 3, in which we examine the subsets
of S in order by the number of elements in each subset. Ideally we would like to
examine all k-subsets before considering any subsets of size k+1 or larger. So we
first construct all the subsets consisting of a single element. Then we examine
all 2-subsets, all 3-subsets, and so on, until k → n and we have constructed all
2n subsets.2

The new sequence, being a permutation of the numbers between 0 and 2n−1,
depends on n; for n = 6, one such sequence (in decimal) is:

B6 = {0, 32, 16, 8, 4, 2, 1,

48, 40, 36, 34, 33, 24, 20, 18, 17, 12, 10, 9, 6, 5, 3,

56, 52, 50, 49, 44, 42, 41, 38, 37, 35, 28, 26, 25, 22, 21, 19, 14, 13, 11, 7,

60, 58, 57, 54, 53, 51, 46, 45, 43, 39, 30, 29, 27, 23, 15,

62, 61, 59, 55, 47, 31, 63}. (1)

No reference to this sequence was found in the literature [1, 3]. We refer to
this ordering as a Banker’s sequence, because it was discovered while looking for
a solution to the problem of matching “adjustments” in a bank’s books at the
end of the day. Figure 3 illustrates how the sequence proceeds systematically
through increasingly larger subsets of S.

2or until we find a solution, or until we run out of time.

5

Table 3: Banker’s sequence. Every element of the set is examined within the first
n iterations. Correspondingly larger subsets are constructed in monotonically
increasing order of size.

Binary Number Subset of { ◦, ¦, ?, • }
0000 φ
1000 { ◦ }
0100 { ¦ }
0010 { ? }
0001 { • }
1100 { ◦, ¦ }
1010 { ◦, ? }
1001 { ◦, • }
0110 { ¦, ? }
0101 { ¦, • }
0011 { ?, • }
1110 { ◦, ¦, ? }
1101 { ◦, ¦, • }
1011 { ◦, ?, • }
0111 { ¦, ?, • }
1111 { ◦, ¦, ?, • }

0 50 100 150 200 250
0

2

4

6

8

Time

k

Figure 3: The banker’s sequence looks at the smaller subsets first.

6

3 Efficiently Enumerating Subsets

Neither lexicographic ordering nor Gray codes are particularly well suited to
looking for a minimum subset. Both sequences will eventually enumerate P(S),
but they tend to waste a lot of time up front constructing large subsets. For
n = 100, there are 2100 subsets, about 1030. Assuming a computer capable
of checking 108 subsets per second, a Gray code solution would require about
1022 seconds, or about 4 × 1014 years to complete. The running time of a
lexicographic ordering is about twice that. The problem is computationally
intractable without an intelligent method of ordering.

Table 4 shows the number of set operations (bit transitions) required to
completely search a smaller set of n = 30 elements. The running time of the
banker’s sequence is comparable to that of a lexicographic ordering. However,
the banker’s sequence is guaranteed to find the smallest subset of up to k ≤ 29
items before either of the other two orderings have even finished examining all
n = 30 items in the set.

Table 4: Comparison of the running times of three different algorithms for a set
of n = 30 elements.

Method of Ordering Total Bit Transitions

Gray Code 1,073,741,824
Lexicographic 2,147,483,617
Banker’s Sequence 2,863,311,486

4 Generating a Banker’s Sequence

There are many ways to generate a banker’s-type sequence. The following al-
gorithm, which generates a Banker’s sequence for a set of n items, implements
it in one possible way.

#include <iostream.h>
#include <stdlib.h>

void output(int string[], int position);
void generate(int string[], int position, int positions);

int length;

// This function takes "string", which contains a description
// of what bits should be set in the output, and writes the
// corresponding binary representation to the terminal.
// The variable "position" is the effective last position.

7

void
output(int string[], int position)
{

int * temp_string = new int[length];
int index = 0;
int i;

for (i = 0; i < length; i++)
{

if ((index < position) && (string[index] == i))
{
temp_string[i] = 1;
index++;

}
else
temp_string[i] = 0;

}

for (i = 0; i < length; i++)
cout << temp_string[i];

delete [] temp_string;
cout << endl;

}

// Recursively generate the banker’s sequence.

void
generate(int string[], int position, int positions)
{

if (position < positions)
{

if (position == 0)
{
for (int i = 0; i < length; i++)
{

string[position] = i;
generate(string, position + 1, positions);

}
}
else
{
for (int i = string[position - 1] + 1; i < length; i++)
{

string[position] = i;
generate(string, position + 1, positions);

8

}
}

}
else

output(string, positions);
}

// Main program accepts one parameter: the number of elements
// in the set. It loops over the allowed number of ones, from
// zero to n.

int
main (int argc, char ** argv)
{

if (argc != 2)
{

cout << "Usage: " << argv[0] << " n" << endl;
exit(1);

}
length = atoi(argv[1]);

for (int i = 0; i <= length; i++)
{

int * string = new int[length];
generate(string, 0, i);
delete [] string;

}
return (0);

}

4.1 How the Algorithm Works

The algorithm works by... (need table from Jano for explanation).
Interestingly, the sequence generated by Algorithm 1, expressed in binary, is

bitwise symmetric about the middle, sort of like a binary reflected Gray code.

5 Conclusions and Future Work

We presented a method for generating a sequence of subsets in which the num-
ber of elements in each subset increases monotonically. There is no other known
method of enumerating subsets that generates a monotonic sequence. The
method we presented is useful for finding the smallest subset Tmin ⊆ S that
satisfies some condition P . It will find a solution much faster than either lex-
icographic or Gray code ordering, because it avoids generating reams of large
subsets until it has examined all of the smaller possible subsets first.

9

An algorithm was presented for efficiently generating sequences of subsets
in monotonically increasing order by size. The technique is applicable to the
solution of Constraint Satisfaction Problems (CSP).

In the future it would be nice to have a direct mapping from the natural
numbers N such that if a∈N < b∈N then the number of 1’s in the binary
representation of a is less than the number of ones in the binary representation
of b.

References

[1] Donald E. Knuth. The Art of Computer Programming. Addison-Wesley
Publishing Company, Reading, Massachusetts, 1973.

[2] F. Ruskey. Information on subsets of a set. http://sue.csc.uvic.ca/
~cos/inf/comb/Subset-Info.html, 1999.

[3] N.J.A. Sloane. The on-line encyclopedia of integer sequences. http://www.
research.att.com/~njas/sequences/, 1999.

[4] E.W. Weisstein. CRC concise encyclopedia of mathematics. http://www.
astro.virginia.edu/~eww6n/math/Subset.html, 1999.

10

